(5) IQ is normally distributed with a mean of 100 and a standard deviation of 15. Suppose one individual is randomly chosen. Let X=IQ of an individual.
(a) Find the probability that the person has an IQ greater than 120.
(b) Mensa is an organization whose members have the top 2% of all IQs. Find the minimum IQ needed to qualify for the Mensa organization.
(c) The middle 50% of IQs fall between what two values?
